top of page

Machine learning for computational biology

Work Desk

We develop and apply machine learning (ML) and artificial intelligence (AI) methods for the analysis of large biomedical datasets. For example, we work on interpretable deep learning to make machine learning more useful for biomedical research.

Machine learning has emerged as a versatile approach for predicting a wide range of biological phenomena. However, its utility for biological discovery has been limited, given that machine learning methods (including the popular and powerful deep neural networks) typically provide little insight into the biological mechanisms that underlie a successful prediction.

We have a long-standing interest in making machine-learning algorithms more interpretable and useful for biological discovery and biomedical applications. Most recently, we have proposed the concept of “knowledge-primed neural networks” for interpretable deep learning on gene-regulatory networks which allows us to infer the activity of key regulatory proteins from single-cell sequencing data, including signaling pathways and protein activity states that are normally hidden to sequencing-based methods.

The power of interpretable machine learning for advancing biomedical research is further illustrated by a series of studies in which we applied machine learning to patient cohorts, for example for time series modelling of the drug response in patients with chronic lymphocytic leukemia and for the identification of drug new combinations for targeted therapy. Moreover, we successfully used machine learning to reconstruct normal and aberrant stem cell differentiation in the blood.

Publications

GPT-4 as a biomedical simulator

GPT-4 as a biomedical simulator

Schaefer M, Reichl S#, ter Horst R#, Nicolas AM, Krausgruber T, Piras F, Stepper P, Bock C*, Samwald M*

Computers in Biology and Medicine  178, 108796 (2024). DOI: 10.1016/j.compbiomed.2024.108796

Donwload PDF

Open access logo
bioarchive-logo-small.png
epmc-logo-small.png

Read online (without subscription)

Press release

Dimensions score
altmetric.png
Single-cell and spatial transcriptomics reveal aberrant lymphoid developmental programs driving granuloma formation

Single-cell and spatial transcriptomics reveal aberrant lymphoid developmental programs driving granuloma formation

Krausgruber T, Redl A#, Barreca D#, Doberer K, Romanovskaia D, Dobnikar L, Guarini M, Unterluggauer L, Kleissl L, Atzmüller D, Mayerhofer C, Kopf A, Saluzzo S, Lim CX, Rexie P, Weichhart T, Bock C*, Stary G*

Immunity  56, 289-306 (2023). DOI: 10.1016/j.immuni.2023.01.014

Donwload PDF

Open access logo
bioarchive-logo-small.png
epmc-logo-small.png

Read online (without subscription)

dimensions.png
altmetric.png
Comparative analysis of genome-scale, base-resolution DNA methylation profiles across 580 animal species

Comparative analysis of genome-scale, base-resolution DNA methylation profiles across 580 animal species

Klughammer J, Romanovskaia D#, Nemc A, Posautz A, Seid C, Linda, Schuster, Keinath M, Ramos JSL, Kosak L, Evankow A, Prinz D, Kirchberger S, Datlinger P, Fortelny N, Schmidl C, Farlik M, Kaja, Skjærven, Bergthaler A, Liedvogel M, Thaller D, Burger PA, Hermann0 M, Distel M, Distel DL, Kübber-Heiss A, Bock C*

Nature Communications  14, 232 (2023). DOI: 10.1038/s41467-022-34828-y

Donwload PDF

Open access logo
bioarchive-logo-small.png
epmc-logo-small.png

Read online (without subscription)

dimensions.png
altmetric.png
Multimodal analysis of cell-free DNA whole-genome sequencing for pediatric cancers with low mutational burden

Multimodal analysis of cell-free DNA whole-genome sequencing for pediatric cancers with low mutational burden

Peneder P, Stutz AM, Surdez D, Krumbholz M, Semper S, Chicard M, Sheffield NC, Pierron G, Lapouble E, Totzl M, Erguner B, Barreca D, Rendeiro AF, Agaimy A, Boztug H, Engstler G, Dworzak M, Bernkopf M, Taschner-Mandl S, Ambros IM, Myklebost O, Marec-Berard P, Burchill SA, Brennan B, Strauss SJ, Whelan J, Schleiermacher G, Schaefer C, Dirksen U, Hutter C, Boye K, Ambros PF, Delattre O, Metzler M, Bock C, Tomazou EM

Nature Communications  12, 3230 (2021). DOI: 10.1038/s41467-021-23445-w

Donwload PDF

Open access logo
bioarchive-logo-small.png
epmc-logo-small.png

Read online (without subscription)

dimensions.png
altmetric.png
Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data

Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data

Fortelny N, Bock C

Genome Biology  21, 190 (2020). DOI: 10.1186/s13059-020-02100-5

Donwload PDF

Open access logo
bioarchive-logo-small.png
epmc-logo-small.png

Read online (without subscription)

dimensions.png
altmetric.png
Chromatin mapping and single-cell immune profiling defines the temporal dynamics of ibrutinib drug response in chronic lymphocytic leukemia

Chromatin mapping and single-cell immune profiling defines the temporal dynamics of ibrutinib drug response in chronic lymphocytic leukemia

Rendeiro AF*, Krausgruber T*, Fortelny N, Zhao F, Penz T, Farlik M, Schuster LC, Kuchler A, Tasnády S, Réti M, Zoltán M, Alpar D*, Bödör C*, Schmidl C*, Bock C*

Nature Communications  11, 577 (2020). DOI: 10.1038/s41467-019-14081-6

Donwload PDF

Open access logo
bioarchive-logo-small.png
epmc-logo-small.png

Read online (without subscription)

dimensions.png
altmetric.png
Combined chemosensitivity and chromatin profiling prioritizes drug combinations in CLL

Combined chemosensitivity and chromatin profiling prioritizes drug combinations in CLL

Schmidl C*, Vladimer GI*, Rendeiro AF*, Schnabl S*, Krausgruber T, Taubert C, Krall N, Pemovska T, Araghi M, Snijder B, Hubmann R, Ringler A, Runggatscher K, Demirtas D, de la Fuente OL, Hilgarth M, Skrabs C, Porpaczy E, Gruber M, Hoermann G, Kubicek S, Staber PB, Shehata M*, Superti-Furga G*, Jäger U*, Bock C*

Nature Chemical Biology  15, 232-240 (2019). DOI: 10.1038/s41589-018-0205-2

Donwload PDF

Open access logo
bioarchive-logo-small.png
epmc-logo-small.png

Read online (without subscription)

dimensions.png
altmetric.png
DNA methylation dynamics of human hematopoietic stem cell differentiation

DNA methylation dynamics of human hematopoietic stem cell differentiation

Farlik M*, Halbritter F*, Müller F*, Choudry FA, Ebert P, Klughammer J, Farrow S, Santoro A, Ciaurro V, Mathur A, Uppal R, Stunnenberg HG, Ouwehand WH, Laurenti E, Lengauer T, Frontini M*, Bock C*

Cell Stem Cell  19, 808-822 (2016). DOI: 10.1016/j.stem.2016.10.019

Donwload PDF

Open access logo
bioarchive-logo-small.png
epmc-logo-small.png

Read online (without subscription)

dimensions.png
altmetric.png
Chromatin accessibility maps of chronic lymphocytic leukaemia identify subtype-specific epigenome signatures and transcription regulatory networks

Chromatin accessibility maps of chronic lymphocytic leukaemia identify subtype-specific epigenome signatures and transcription regulatory networks

Rendeiro AF*, Schmidl C*, Strefford JC*, Walewska R, Davis Z, Farlik M, Oscier D, Bock C*

Nature Communications  7, 11938 (2016). DOI: 10.1038/ncomms11938

Donwload PDF

Open access logo
bioarchive-logo-small.png
epmc-logo-small.png

Read online (without subscription)

dimensions.png
altmetric.png
Managing drug resistance in cancer: Lessons from HIV therapy

Managing drug resistance in cancer: Lessons from HIV therapy

Bock C, Lengauer T

Nature Reviews Cancer  12, 494-501 (2012). DOI: 10.1038/nrc3297

Open access logo
bioarchive-logo-small.png
epmc-logo-small.png

Read online (without subscription)

Project website

Press release

dimensions.png
altmetric.png

* shared first or shared senior authorship

bottom of page